Quick Start
Backtester Quick Start
In this example, we use Backtester in the context of financial markets, hence our user-defined logic is based on a notion of trading strategy. This can be extended to any other scenario which user wants to emulate. 
Once we have our best model from Trainer, we can plug it in our BaseStrategy derived class and run Backtester
- 
Define config See MLStrategy for example implementationfeaturizer_config_path: featurizer-config.yaml inference_config: model_uri: <your-best-model-uri> predictor_class_name: 'XGBoostPredictor' num_replicas: <number-of-predictor-replicas> simulation_class_name: 'backtester.strategy.ml_strategy.MLStrategy' simulation_params: buy_delta: 0 sell_delta: 0 user_defined_params: portfolio_config: <portfolio_config> tradable_instruments_params: - exchange: 'BINANCE' instrument_type: 'spot' symbol: 'BTC-USDT'
- 
Run Backtester svoe backtester run --config-path <config-path> --ray-address <addr> --num-workers <num-workers>config = BacktesterConfig.load_config(config_path) backtester = Backtester.from_config(config) backtester.run_remotely(ray_address=ray_address, num_workers=num_workers)
This will run a distributed event-driven backtest using features and models defined earlier
- 
Get statistics with stats = backtester.get_stats()