Quick Start
Trainer Quick Start
Once we have our FeatureLabelSet
calculated and loaded in cluster memory using Featurizer, let's use Trainer to train XGBoost model to predict mid-price 5 seconds ahead, validate the model, tune hyperparams and pick best model
- Define config
xgboost: params: tree_method: 'approx' objective: 'reg:linear' eval_metric: [ 'logloss', 'error' ] num_boost_rounds: 10 train_valid_test_split: [0.5, 0.3] num_workers: 3 tuner_config: param_space: params: max_depth: randint: lower: 2 upper: 8 min_child_weight: randint: lower: 1 upper: 10 num_samples: 8 metric: 'train-logloss' mode: 'min' max_concurrent_trials: 3
-
Run Trainer
svoe trainer run --config-path <config-path> --ray-address <addr>
config = TrainerConfig.load_config(config_path) trainer_manager = TrainerManager(config=config, ray_address=ray_address) trainer_manager.run(trainer_run_id='sample-run-id', tags={})
-
Visualize predictions
svoe trainer predictions --model-uri <model-uri>
-
Select best model
svoe trainer best-model --metric-name valid-logloss --mode min
best-model-uri = mlflow_client.get_best_checkpoint_uri(metric_name=metric_name, experiment_name=experiment_name, mode=mode)